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Abstract

We report on a search for R-parity violating supersymmetry in p�p collisions

at
p
s = 1.8 TeV using the D� detector at Fermilab. Events with at least

two electrons and four or more jets were studied. We observe 2 events in

99 � 4:4 pb�1 of data, consistent with the expected background of 1:8 � 0:4

events. This result is interpreted within the framework of minimal low-energy

supergravity supersymmetry models. Squarks with mass below 243 GeV/c2
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and gluinos with mass below 227 GeV/c2 are excluded at the 95% con�dence

level (C. L.) for A0 = 0, � < 0, tan � = 2 and a �nite value for R-parity

violating Yukawa coupling �01jk (j =1, 2 and k =1, 2, 3). For equal squark

and gluino masses, the corresponding mass limit is 277 GeV/c2.

The standard model (SM) of particle physics has survived many precision tests. However,
it is thought incomplete, and supersymmetry [1] is considered to be an attractive extension
to the SM because it protects the Higgs mass from large radiative corrections and can
provide a dynamical means for breaking electroweak symmetry. Supersymmetric extensions
of the SM predict partners for all SM particles, with spins di�ering by half a unit. The
simplest extension, the minimal supersymmetric standard model (MSSM), has over one
hundred free parameters. We have therefore chosen the more constrained minimal low-
energy supergravity (mSUGRA) [2] framework for our comparison with data. mSUGRA
has only �ve free parameters speci�ed at the uni�cation scale: a common mass for scalar
fermion partners (m0), a common mass for all gauginos (m1=2), the ratio of the vacuum
expectation values of the two Higgs doublets (tan �), a common trilinear coupling constant
(A0), and the sign of the Higgsino mass parameter (�). The masses and couplings at the
weak scale are obtained from these �ve parameters by solving a set of renormalization group
equations.

Most of the searches for supersymmetric particles reported thus far have assumed the
conservation of a multiplicative quantum number called R-parity [3]. R-parity is de�ned as
R = (�1)3B+L+2S, where B, L and S are the baryon, lepton and spin quantum numbers,
respectively. R is +1 for SM particles, and �1 for their supersymmetric partners. In
supersymmetry, R-parity violation can occur quite naturally through the following Yukawa
coupling terms in the superpotential:

�ijkLiLjEk + �
0

ijkLiQjDk + �
00

ijkU iDjDk

where L and Q are the SU(2)-doublet lepton and quark super�elds; E, U , and D are the
singlet lepton, up and down type quark super�elds, respectively; and i, j and k are the
generation indices. The Yukawa couplings are antisymmetric in the same super�eld indices.
Thus, there can be up to 45 new Yukawa terms. We have therefore made the following
simplifying assumptions for our analysis.

� Among the 45 R-parity violating coupling terms, only one dominates. This assumption
is motivated by the fact that the new couplings are similar to the SM Yukawa couplings,
where the top quark Yukawa term dominates. Moreover, when more than two couplings
are �nite, they often induce rare processes, like avor changing neutral currents at
the tree level, therefore bounds on the products of two couplings are generally very
stringent [4].

� The R-parity violating coupling under consideration is strong enough so that the light-
est supersymmetric particle (LSP) decays within the detector. If the strength of the
coupling is > 10�3, the LSP decays close to the interaction vertex. This requirement
is consistent with the existing upper bounds on the strength of the couplings obtained
from low energy experiments [5].
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� The strength of the �nite R-parity violating coupling term is signi�cantly smaller
than the gauge couplings. Thus, supersymmetric particles are produced in pairs, and
R-parity violation manifests itself only in the decay of the LSP.

Of the three kinds of Yukawa coupling terms, the B-violating �00 are di�cult to study at
the Fermilab Tevatron as they lead to events with multiple jets that would be overwhelmed
by large backgrounds from QCD production of jets. However, the L-violating � and �0

type couplings give rise to multilepton and associated multijet �nal states [6], which provide
excellent signatures at the Tevatron.

This Letter reports on an analysis of the dielectron and four jets channel, interpreted
in the mSUGRA framework, with R-parity violating decays of the LSP. In the mSUGRA
framework, the lightest neutralino is almost always the LSP except in a small region of the
(m0;m1=2) plane where the sneutrino is the LSP (indicated in Fig. 1). But the mass of the
sneutrino in that region is below 39 GeV/c2 and, hence, excluded (> 43:1 GeV/c2 at 95%
C. L.) [7] by the measurement of the invisible decay width of the Z boson, assuming that
there are three degenerate left handed sneutrino species. We assume that all of the R-parity
violating couplings are small except �01jk (j =1, 2 and k =1, 2, 3), so that each LSP that
decays into one electron and two quarks, gives rise to �nal states with two or more electrons
and four or more jets, that we consider in our analysis.

The D� detector [8] has three major subsystems: a central tracker, a hermetic uranium
liquid argon sampling calorimeter, and a muon spectrometer. Electrons are identi�ed as
narrow energy clusters that deposit more than 90% of their energy in the electromagnetic
sections of the calorimeter. Jets are reconstructed using a cone algorithm [9] with radius
0.5 in pseudorapidity � azimuthal angle (�; �) space. The data used for this analysis were
collected during the 1994{1995 Fermilab Tevatron run at a center-of-mass energy of 1.8 TeV,
and correspond to an integrated luminosity of 99� 4:4 pb�1 [10].

After studying the e�ect of di�erent cuts on signal (Monte Carlo) and on background
(data as well as Monte Carlo based), we have chosen the following set of trigger and kinematic
requirements to reduce background while keeping a high e�ciency for signal. Events for this
analysis were collected with triggers requiring at least �ve calorimeter energy clusters, each
with a radius of 0.3 in (�; �) space, ET > 10 GeV, con�ned to j�j � 2:5, and havingHT � 115
GeV, where HT is de�ned as the scalar sum of the transverse energies of all calorimeter
energy clusters within j�j � 2:0. In the o�ine analysis, events were further required to have
at least two electrons, one with ET � 15 GeV and the second with ET � 10 GeV, and at
least four jets with ET � 15 GeV. Electrons were required to be either within j�j � 1:1
(central calorimeter) or 1:5 � j�j � 2:5 (forward calorimeters), to be isolated from other
energy deposits, and to have shower shape and tracking information consistent with that
expected for electrons. Jets were required to be within j�j � 2:5. To suppress backgrounds
from electron decays of Z bosons, we rejected events whose dielectron invariant mass was in
the range of 76{106 GeV/c2. To ensure high trigger e�ciency, events were further required
to have HT > 150 GeV. Two events survived all requirements. Table I shows the cumulative
e�ect of the cuts on the data. The huge reduction in the number of events caused by the
requirement of two isolated electrons reects the fact that most of the events passing the
trigger are due to QCD multijet production, and have no true isolated electrons.

The major inherent SM backgrounds are from Drell-Yan production (DY), from the
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TABLE I. Cumulative e�ect of the analysis cuts on the data sample.

Cut No. of events

Passed trigger requirement 163140

At least 2 electrons 38

At least 4 jets 6

Invariant mass cut (jmee �mZ j > 15 GeV/c2) 2

HT cut (HT > 150) 2

decay of tt to electrons, and from the decay of Z bosons to pairs of taus that subsequently
decay to electrons. Events arising from the misidenti�cation of jets as electrons comprise
the major source of instrumental background for this analysis.

A geant [11] based simulation of the D� detector was used to estimate the e�ciencies
of the kinematic cuts for non-instrumental backgrounds. Measured electron identi�cation
e�ciencies were then folded in to calculate the net detection e�ciency. Using Z(! ee) +
jets data, we estimated electron identi�cation e�ciencies to be 0:68 � 0:07 in the central
calorimeter and 0:60 � 0:07 in the forward calorimeters. isajet [12] was used to generate
DY events. The DY cross section given by isajet was normalized by comparing Monte
Carlo events with Z + multijet data in the Z boson mass region. Top quark events were
generated using the herwig [13] program. The D� measured cross section for top quark
pair production (5:9 � 1:7 pb) [14] was used to estimate the number of background events
due to top quark pair production. The D� measurement of the production cross section
of the Z boson multiplied by its leptonic branching fraction of (221� 11) pb [10] was used
to estimate the background due to Z(! �� ! ee). The instrumental background was
estimated from data in two steps. First, from multijet data, we estimated, the probability
of misidenti�cation of a jet as an isolated electron in various �ducial regions of the detector.
The probability for a jet to mimic an electron was estimated to be (4:56�0:37)�10�4 in the
central calorimeter and (1:38� 0:22)� 10�3 in the forward calorimeters. These probabilities
were found to be independent of the jet ET . We then selected a multijet data sample
passing the same kinematic requirements as our data sample, but requiring two additional
jets instead of two electrons. The number of background events was estimated by applying
the probability for jet misidenti�cation to these multijet data.

Table II summarizes the background contributions with their statistical and systematic
uncertainties. The statistical component of the uncertainty includes the uncertainty due to
the �nite sample size of simulated events and the uncertainties in the electron identi�cation
e�ciencies. The systematic component of the uncertainty includes uncertainties due to jet
energy scale and values of cross sections.

The expected background is 1:8� 0:2� 0:3 events, consistent with the number of events
observed in the data. We interpret this null result in terms of an excluded region in mSUGRA
parameter space. Using isajet, we generated signal events at 125 points in the (m0;m1=2)
plane, with A0 = 0, � < 0 and tan � = 2. (These are the values used by most of the
current SUSY searches at the D� and CDF experiments.) R-parity violating decays of the
LSP are not available in isajet. The desired decay modes and branching fractions for the
LSP were therefore added separately. The branching fraction of the LSP into a charged
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TABLE II. Summary of backgrounds. The �rst uncertainty is statistical and the second is

systematic. The statistical uncertainty is negligible for instrumental background.

Background Expected events in 99 pb�1

Processes

DY ! ee 0:37� 0:14� 0:14

Z ! �� ! ee 0:07� 0:01� 0:02

tt! ll! ee 0:07� 0:02� 0:02

Instrumental 1:27� 0:24

Total 1:8� 0:2� 0:3

TABLE III. E�ciency (�) multiplied by the branching fraction (B) and the expected event

yield hNi, for several points in the (m0;m1=2) parameter space. The uncertainties are the sum in

quadrature of the statistical and systematic uncertainties (the statistical uncertainty dominates).

m0 ( GeV/c
2 ) m1=2 ( GeV/c

2 ) �B(%) hNi
0 120 1:59� 0:23 3:5� 0:5

50 110 1:49� 0:22 2:8� 0:4

120 110 1:86� 0:25 3:3� 0:4

190 100 1:56� 0:22 3:4� 0:4

280 90 0:95� 0:15 2:9� 0:4

320 90 0:71� 0:13 2:2� 0:4

lepton or neutrino depends on the gauge composition of the LSP, which in turn depends
on the mSUGRA parameters. This was incorporated into isajet using the calculation in
Ref. [15]. The e�ciency multiplied by the branching fraction for each signal sample was
determined using a method similar to that used for the estimation of the SM background.
The expected event yields in the (m0;m1=2) parameter space, corresponding to an integrated
luminosity of 99 pb�1, are given in Table III.

For each point in the (m0;m1=2) plane, we obtained a 95% C. L. upper limit on the cross
section for signal. This was done using a Bayesian technique, with a at prior for the signal
cross section, and Gaussian priors for the luminosity, e�ciency, and expected background.
The excluded region in the (m0;m1=2) plane was then obtained by comparing the limits on
the measured cross section with the leading-order SUSY prediction given by isajet. This
is shown in Fig. 1.

The slanted hatched area in Fig. 1 indicates the region in which the model does not
produce radiative electroweak symmetry breaking. To understand the characteristics of
the exclusion contour, it is convenient to divide the (m0;m1=2) plane into three regions:
the low m0 region (m0 < 150 GeV/c2), the intermediate m0 region (150 GeV/c2 < m0 <

280 GeV/c2), and the asymptotic region (m0 > 280 GeV/c2).
In the low m0 region, the dominant SUSY process that contributes to the signal is pair

production of squarks. As we move toward higher m0 values, the corresponding squark
mass also increases, thereby reducing the squark pair production cross section. Hence, in
this region, the exclusion contour is expected to follow a squark mass contour. This is

7



mg̃ = 280 GeV/c2

mg̃ = 330 GeV/c2

mg̃ = 227 GeV/c2

m
g̃
 =

 m
q̃ m

q̃  = 243 G
eV

/c 2

m
q̃  = 273 G

eV
/c 2

m0 (GeV/c2)

m
1/

2 
(G

eV
/c

2 )

 N
o 

E
W

S
B

 This experiment 95% C.L.

ν̃ LS
P

FIG. 1. Exclusion contour in the (m0;m1=2) plane for A0 = 0, � < 0, tan � = 2 and a �nite

�0
1jk (j =1, 2 and k =1, 2, 3) coupling. The region below the bold line is excluded at the 95% C.L.

The slanted hatched region is excluded for theoretical reasons. In the horizontally hatched region,

the sneutrino is the LSP, but is excluded by searches at LEP (see the text).

demonstrated in Fig. 1, where the exclusion contour closely follows the curve for which the
mass of the squark is 273 GeV/c2. The dip in the contour for m0 = 60� 80 GeV/c2 can be
attributed to the fact that the two electrons can originate either from the decay of LSPs or
from any other SUSY particles. In about 60% of the cases, both LSPs decay into electrons.
Moreover, electrons arising from the decay of LSPs do not always pass the ET cut. In such
cases, however, additional electrons arising from the decay of the second lightest neutralino
(~�0

2) can make the event pass the ET criterion. But for m0 = 60 � 80 GeV/c2, sneutrinos
become lighter than the ~�0

2, and the decay of ~�0
2 to ~�0

1 and neutrinos (~�0
2 ! �~�; ~� ! ~�0

1�)
becomes dominant. This reduces the overall branching fraction to dielectrons, resulting in
the observed dip.

As m0 increases, the sneutrino becomes heavier than ~�0
2, and consequently the branching

fraction of ~�0
2 to neutrinos decreases, leading to an increase in the rate for the competing
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selectron channel, thereby enhancing the branching into the dielectron mode. (That is, when
the ~�0

2 decay proceeds through a virtual sneutrino, the decay through a virtual selectron
becomes competitive.) The exclusion contour therefore moves up and again follows the 273
GeV/c2 squark mass curve until about m0 = 150 GeV/c2.

In the intermediate m0 region, processes such as the production of gluinos, ~��1 , and ~�0
2,

start becoming important. The masses of these particles, as well as their production cross
sections, do not change much with the increase of m0. As a result, the exclusion contour in
this region deviates from the constant squark mass contour, becoming atter in m0.

Finally, in the asymptotic region, production of squarks becomes insigni�cant, and the
contour of exclusion becomes completely at. In Fig. 1, we have overlaid contours of �xed
gluino mass and the average of the masses of the �rst two generations of squarks. Squarks
with mass below 243 GeV/c2 and gluinos below 227 GeV/c2 are excluded for A0 = 0,
� < 0, tan � = 2, and a �nite value (> 10�3) of �01jk (j =1, 2 and k =1, 2, 3) coupling.
For equal mass squarks and gluinos, the corresponding limit is 277 GeV/c2.

mg̃ = 150 GeV/c2

mg̃ = mq̃

m
q̃  = 200 G

eV
/c 2

m0 (GeV/c2)

m
1/

2 
(G

eV
/c

2 )

 No EWSB

 This experiment 95% C.L.

ν̃ LS
P

FIG. 2. Exclusion contour in the (m0;m1=2) plane for A0 = 0, � < 0, tan � = 6, and a �nite

�0
1jk ( j =1, 2 and k =1, 2, 3) coupling.
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We note that our results are mostly independent of the choice A0, as it a�ects only third
generation sparticle masses. For � > 0 and higher values of tan �, the sensitivity of our
search is expected to fall due to two reasons: 1) the photino component of the LSP decreases,
resulting in the decrease of the branching fraction of the LSP into electrons; 2) the charginos
and neutralinos become light, resulting in events with softer electrons and jets that fail the
kinematic requirements. We have estimated the sensitivity of our search for larger values
of tan �, by extrapolating our tan � = 2 results using smeared parton level isajet [16]
(without full detector simulation). Figure 2 shows the region excluded at 95% C. L. in the
(m0;m1=2) plane for A0 = 0, � < 0, tan � = 6, and a �nite value (> 10�3) of �01jk (j =1,
2 and k =1, 2, 3) coupling.

For even higher values of tan � the sensitivity of this search with the present set of
requirements becomes very poor. For these choices of parameters, it may be necessary to
reduce the requirement on the number of electrons, and impose a requirement on E/T , to
gain better sensitivity.

In conclusion, we have searched for events containing at least two electrons and four or
more jets. Finding no excess of events beyond the prediction of the standard model, we
interpret the result within the mSUGRA framework as an excluded region in the (m0;m1=2)
plane for �xed values of A0 and � and for several values of tan � in a model with R-parity
violating decay of the LSP.
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and acknowledge support from the Department of Energy and National Science Foundation
(USA), Commissariat �a L'Energie Atomique (France), Ministry for Science and Technol-
ogy and Ministry for Atomic Energy (Russia), CAPES and CNPq (Brazil), Departments
of Atomic Energy and Science and Education (India), Colciencias (Colombia), CONACyT
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